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ABSTRACT 

This paper discusses the detailed design of an XML 
databinding framework for aircraft engine simulation. 
The framework provides an object interface to access 
and use engine data. while at the same time preserving 
the meaning of the original data. The Language 
independent representation of engine component data 
enables users to move around XML data using HTTP 
through disparate networks. The application of this 
framework is demonstrated via a web-based turbofan 
propulsion system simulation using the World Wide 
Web (WWW). A Java Servlet based web component 
architecture is used for rendering XML engine data into 
HTML format and dealing with input events from the 
user, which allows users to interact with simulation data 
from a web browser. The simulation data can also be 
saved to a local disk for archiving or to restart the 
simulation at a later time. 

INTRODUCTION 

Computer programs capable of simulating the 
operation of aircraft engines are useful tools that can 
help reduce the time, cost and risk of product design 
and development and facilitate learning about the 
complex interactions between jet engine components. 
However, the strongly-coupled nature of the 
components' flow physics and the large number of 
operating and design parameters needed for simulation 
of the aircraft engine system present a challenge to 
developers who aim at designing an easy-to-use and 
effective engine simulation program for users. Most of 
the aircraft engine simulation software currently 
available have limitations primarily in the presentation 
of the simulation input and output data, due to the use 
of text-based interfaces, and the lack of data validation 
methods. As a result, engine simulation results could be 
overwhelming and difficult to interpret without a 
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significant effort. Moreover, traditional sirnulation data 
are, in general, stored in proprietary data formats and 
constrained by hardware and operating system platform 
differences. Thus, developers are hicdered in their 
efforts to synthesize simulation data in their design 
unless a clearly defined and interoperable data interface 
exists. The bottlenecks caused by iata handling, 
heterogeneous computing enviroments and 
geographically separated design teams. continue to 
restrict the use of these tools [ l ] .  

Web-based simulation, due to its accessibility, 
convenience and emphasis on collaborative 
composition of simulation models. distributed 
heterogeneous execution, and dynarr-ic multimedia 
documentation, has the potential to hriamentally alter 
the practice of simulation [ 2 ] .  Presentl?. :he majority of 
work in web-based simulation has xntzred on re- 
implementation of existing distributed 2nd standalone 
simulation logics within Java Applets :?.-!I. Applets are 
quite popular because they are suppocd by common 
browsers and are safe to execute on ciient computers. 
However. with the whole simulation c c 2  iight(v-bozind 
to an Applet, it may take a long time for the rich engine 
simulation code to load within a clierT's browser. In 
addition, it is often not efficient to execute complicated 
simulation logic at the client side. ivhere a high 
performance computer is generally not available. 
Applets' security model, arguably one si  its strengths, 
also creates obstacles for post-processiq of simulation 
data beyond what applets provide since it inhibits 
creation of data files on the host machine. 

This paper describes a web-based sircraft engine 
simulation system, called X-Jgrs. through dynamic 
XML databinding framework which permits data 
communication with ease. XML [ 5 ] .  due to its 
structured, platform and language independent, highly 
extensible and web-enabled nature. has rapidly become 
an emerging standard to represent data between diverse 
applications. XML can represent both structured and 
unstructured data, along with its rich descriptive 
delimiters. By using XML to represent engine data in 
high performance propulsion system simulation, it is 
possible to faithfully model the structural elements of a 
chosen component in an interoperable fashion that is 
natural in their simulation context. Since HTTP (Hyper 
Text Transfer Protocol) already s\pports transmission 
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of plain text, XML data can be moved around readily 
using the HTTP through firewalls and disparate 
networks. Engine databinding through XML also 
provides simulation designers with a higher and more 
user-friendly API to work with underlying engine 
components repository and thus enables the 
components to communicate with each other effectively. 

ENGINE MODELS 

This section provides an overview of engine analysis 
model that is used in our web-based simulation. Also 
presented is the designed engine data object model that 
will be used in engine databinding framework. 

Analysis Model 
The mathematical model used to describe the 

operation of the gas turbine system in the current work 
is patterned after that presented in [ 6 ] .  Here, the gas 
turbine system is decomposed into its individual basic 
components: inlet, compressor, combustor, turbine, 
nozzle, bleed duct connecting duct, and connecting 
shaft. Intercomponent mixing volumes are used to 
connect two successive components as well as define 
temperature and pressure at component boundaries. 
Operation of each of the components is described by 
the equations of aero-thermodynamics which are space- 
averaged to provide a lumped parameter model for each 
component. For dynamic (transient) gas turbine 
operation, the model includes the unsteady equations 
for fluid momentum in connecting ducts, inertia in 
rotating shafts, and mass and energy storage in 
intercomponent mixing volumes. A complete 
description of the model can be found in [7]. 

Data Obiect Model 
Based on the above engine analysis model, an 

"Engine Data Object" (EDO) model was designed to 
precisely define the intellectual content of engine 
component data, including a complete definition of 
engine data entities, attributes, relationships, and 
specification of local and global constraints on these 
entities. 

In order to effectively represent simulation data 
using XML, the engine system, shown in Figure l(a), 
was first decomposed into individual basic components 
in a strict hierarchical manner in accordance with the 
XML topology. A set of data structures is then built in 
parallel with each engine component. An overall layout 
of a simplified data model is summarized in Figure l(b). 
Each node in the model shown here is represented as an 
engine data object. The figure also indicates (informally) 
what data, if any, are encapsulated within each node 
object. For example, the N o d e  data object shown in 
Figure l(c) gives information about a particular 

converging-diverging or converging-only nozzle in an 
engine simulation. The user-defined parameters of a 
nozzle includc a set of nozzle design point data and 
nozzle initial operating data, such as mass flow rate, 
throat area, exit area. gross thrust. etc. Consequently, 
these data are designcd as subchildren data objects in 
Nozzle. In addition. the nozzle throat and exit areas may 
be adjusted during the transient by a user-defined 
schedule; ThroatAreaTransienrControllers and 
E.rit..lreaTransientControllers are designed for this 
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Figure 1 (a) decomposition of engine component; (b) 
hierarchical engine data object model; (c) subchildren 
objects inside nozzle data object 
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purpose. Lh-IeSolution object is used to store the 
solution datasets after a simulation, which itself 
contains other children data objects that are not shown 
here. An optional Descriptor object can also be 
included to describe nozzle operating status. 

ESCINE DATABINDING FRAMEWORK 

Based on our data object model design. an Engine 
Data Binding (EDB) Framework has been implemented 
in Java to facilitate binding an engine data object into a 
data entity in XML-based engine data file. The 
framework makes it easy to convert between the engine 
data stored in XML file and their object representations, 
and facilitates the applications to access, modify and 
store any engine component data object. Figure 2 gives 
a schematic representation of all components in engine 
databinding framework. Engine databinding framework 
can also be run as a standalone application [8]. 

Engine Schema 
Engine schema establishes a bridge between XML- 

based engine data and its data object model. It 
associates each piece of the information defined in the 
data object model to a precise location in the XML 
structure. .A set of engine schemas have been designed 
using X\lL Schema language [9] that specifies how the 
constituents of the engine data objects are mapped to an 
underlying XML-based engine data structure. The rules 
in the data model will guarantee that the schema 
description of engine data is syntactically correct and 
also folloivs the grammar defined within it. 

Figure 3 shows a sample schema representation for 
the .Voz:!e and one of its children, TransientController, 
which is used to supply transient control parameters for 
throat and exit areas. Based on the Nozzle data model 

shown in Figure l(c), the “Nozzle” schema defines all 
the data elements that are contained in a single nozzle 
data object. These elements are constrained by their 
corresponding complexTypes and simpleTypes and 
encapsulated in the ~Vozzle object. For example. 
.VozzleDesi,SriPointDclltr defines all its permitted data 
variables. such as ,Clas.sFloivRuie, ThroatArea etc, and 
their corresponding data types. which are built-in 
double type. Also note that in the above Nozzle schema 
only ,VozleDesignPointData element is explicitly 
defined, the rest of its element definitions use the “ref’ 
attribute to tell the data parser in the engine simulation 
that the definition for these elements are defined in 
other schema files with the same target namespace (Le, 
the default “engine” namespace in Fig.3) as nozzle. 
These ‘ref ed schema will be automatically included by 
schema parser during the run time. This kind of flexible 
design will guarantee that all the basic schema types 
can be reused. Moreover. it will allow for modular 
development and easy modification of engine schema 
as engine data object model evolves in the future. 

Schema Compiler 
The engine schema compiler is designed to map an 

instance of an engine schema into the appropriate 
engine data object model. It  aziiomatically translates an 
engine-specific schema into a set of derived engine data 
object models (set of classes and types which represent 
the data) with appropriate access and mutation (Le., get 
and set) methods that can be used to affect the 
underlying engine data files. Figure 4 shows an 
example of how a generated class should correspond to 
the nozzle schema defined in the previous section. With 
the “Nozzle” schema defined. attributes are “compiled” 
into simple Java types, usually primitives; element 
(along with its type information which specifies the 
conten t  model)  becomes engine da ta  class,  with 

Engine Data Model 

Engine Schema 

I , 

Figure 2. Engine databinding framework 
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' y -  , e r s G - j ' s  ;'-s 

sa scnema !arge!Naresoace= 

:.,eng ne' eie.rentForrrDefajl:="qr;ai,fiec' vemn:" 2') 
r = TransientController xsd":> cxsd include s 

<xsd-include s r =  'Descriptor.xsd":> 

Cxsd complexType name='Voule-t"> 
<xsd.sequence> 

<xsd element name='DescnptoC type="Descnptor-t" rninOccurs=*O"'> 
<xsd element name='NouleDesignPoinfData"> 

Cxsd cornplexT,pe> 
<xsd'aUr:cute name="MassFlowRate" type="xsd:double"P 
cxsd.an: cute name="ThroatArea" type="xsd:double" > 
cxsd anrcute name="ExitArea" type="xsd:double"i> 
Cxsd anntute name="DragCoefficient" type="xsd:double"b 
<xsd .an rn te  name="VelocityCoefcient" type="xsd:double"l> 
<xsd-anrcute name="GrossThrust" type="xsd:double"'> 

4 x s d  cornplexTjpe> 
<ixsd:element> 
<I-- NozzlelnitralC,-s~~ringDala element IS simiianly oesigned 

and ommilfez -$'e 'or simplicity--> 
<xsd'element name= ThroatAreaTransCntl" 

type='TransientCntI-t"b 
<xsd.element name='ExitAreaTransCntl" 

type='TransientCntl-t"l> 
<!-AN NorzieSc'; 7-Dara elements and ornmitted ior  s !~p l iC ! r j ' - -~  

</xsd'sequence> 
<xsd'attribute name='Vame" type="xsd.string" use="requiredl> 

<lxsd.complexType> 
lxsd schema> 

'xml version=": C"7s 
csd'schema xmlns xsd="hnp ."ww.w3.org/2001/XMLSchema" 

elementForrnDeiault="quairfied" version="l .O"> 

< I - -  TransierirCor:rroils~ r r -oexType --> 
<xsd:complexType narre= TransientCntl-t"> 

<xsdsequence> 
<xsd elemerr -ame="TimeArray" type="doubleDatalist"i> 
<xsd elemer l  -ame="ValueArray" type="doubIeDatalist":> 

4 x s d  sequence> 
<xsd:attribute nane='name' type="xsd:string" use="optional"i> 

<lxsd.complexType> 

<xsd,simpleType name='$oubleDatalist"> 

<Ixsd:simpleType> 
<xsd:list itemType='xsd:double'*l> 

xsd-schema> 

I- all the Java -,port statements here 

iublic class F:cu:e implements java.io Senalizable { 
private Str1r.G _lame; 
pnvate Cescrstor descriptor; 
private Ces,q?ointData _nouleDesignPointCa': 
pnvate In!tC:eratingData _noulelnit05eratingC3ia; 
pnvate Thrca~kaTransCntl -throatAreaTransCn:l: 
pnvate ExitAreaTransCntl _exitAreaTransCntl: 
pnvate NozzeSolutionData -nouleSolbtionData. 

public Nowe!)  ( 
super(); 

public StnnG setName() ( 
return this -name; 

1 

1 

public void serName(Stnng name) ( 
this.-nar;e =name; 

public ExitAreaTransCntl getExitAreaTransCntlli { 

i 
return in's -exiIAreaTransCntl; 

public doid setExitAreaTransCntl(ExitAreaTransCntl exitAreaTransCntl) ( 

1 
:his _exitAreaTransCntl = exitAreairansCntl, 

I / -  the same .wth ail other rypes and are ornineo here 

public woiean validate() 
throws ~ngineValidationExceprion { 
i 

'lalidator validator = new Validatori;: 
ialidator.validate(this); ) 

catch iE'SineValidationException vex) { 
rer.:n ialse: 

return :?de; 

1 
puolic VO!G -arshalfiava.io.Writer out) 

thrcws MarshalException, EngineValida:,onException ( 
Marsha,,er marshal(this. out); 

} 
public sta:c houle bnmarshalijava.~o.i?eader ?eader) 

!hrows LlarshalExcepfion. EngineVa1ida;onExceDtion { 
return i~uouie)Unmarshaller.unmarshal(Nou.e.class, xader): 

! 

Figure 3. Engine schema representation of Nozzle and 
TransientControl data object model 

Figure 4. Yozzle data class generated by schema 
compiler process 

generated data types and properties encapsulated in it. 
The generated class provides pairs of accessor (get) and 
mutator (set) methods for all the properties defined in 

objects automatically. These are achieved through an 
underlying Marshalling Framework design. 

engine schema, which closely follows the JavaBean 
Design Pattern [ 101. 

In addition, the engine schema compiler can 
generate the data 'validation' class code so as to 
enforce the constraints expressed in the schema. The 
code generated by the valid schema translation will 
check that incoming engine data files are 'legal' with 
respect to the constraints defined in schema, thereby 
ensuring that only valid XML-based engine data files 
are produced by the marshalling process. 

The generated Java classes also include a set of 
marshal, and iinmarshal methods that can be used to 
"translate" engine application data f r o d t o  engine data 

Marshalling Framework 
The marshalling framework supports the 

transportation (immarshal) of XML-based engine data 
into "graphs" of interrelated instances of objects that 
are generated by engine schema complier and, in 
addition, converting (marshal) such graphs back into 
engine data stored in XML documents. The marshal 
method works by taking a desired Writer object as 
argument and then returning an XML element 
representation of that object. If the object contains 
references to other engine data objects, then recursion 
can be used. using the same method. The same applies 
to unmarshaling process where a general Reader is 
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used. When the engine data are correctly unmarshakd, 
each element node in the XML file becomes an instance 
of the data class that was generated by engine schema 
compiler, i.e. engine data object. Then. the engine 
simulation components can use the corresporiding 
methods, along with a set of miitator and occesor 
methods, to work with the engine data in the underlying 
data file. The end result is engine data binding. 

SIMULATION ARCHITECTURE 

X-Jgts is a web-based. interactive, graphical, 
numerical gas turbine simulator which can be used for 
the quick, efficient construction and analysis of 
arbitrary gas turbine systems. It also provides a 
systematic, meaningful data presentation and secured 
data operation scheme with the support of a built-in 
data binding framework. Figure 5 illustrates the overall 
simulation architecture described in this paper, as well 
as its major components and the interactions between 
web client and simulation server. 

Web Client 
In X-Jgts system, the client user interface is 

delivered through a web browser. The web browser is a 
universal user interface that is responsible for 
presenting engine simulation data, issuing requests to 
the simulation web sener. and handling any results 
generated at the request of the user. X-Jgrs uses both 
dynamically generated HTML and Swing-based Java 
Applet to properly present user-friendly data; in 
particular, HTML is used to display simulation results, 

while Swing-based Applet is used for graphic data 
display. The platform-independent nature of HTML and 
Java Applet enables the mgine simulation to be widely 
conducted from heterogeneous, networked computers. 

A s  a general rule for web-based simulation, 
application logic should not be implemented on the 
browser. Complex simulation logics that are tightly 
built into Applets are normally inefficient to execute 
due to the fact that client side users generally lack 
powerful computing resource. In addition, it may take 
quite a long time for a client’s browser to load. 
Therefore, the browser. HTML, and Swing Applets 
designed in X-Jgts are used strictly for delivering the 
user interface and view into the engine simulation. The 
user requests are made either from the front-end Applet 
or HTML code to perform designate tasks remotely in 
the simulation web sener. 

Simulation Server 
Engine simulation sener is a dynamic extension of 

a Web server and the heart of any web interactions. It 
uses HTTP as protocol for communication and consists 
of static resources, such as the front end simulation 
Applet, as well as dynamic web pages (HTML) that are 
generated by different mgine web components hosted 
in the server. The wzb server listens for incoming 
requests and then senices the requests as they come in. 
Once the server receiles a simulation request, it then 
springs into action. Depending on the type of request, 
the web server might look for a web page, or execute a 
web component on the si!n er. Either lvay, it will return 
some kind of results to the web client. 

In X-Jgts, engine web components are sets o f  

Engine 
Simulation 
Computing 

Databinding I Engine I Result 

Conf. 

Downloa 
Data 

Figure 5. Web-based simulation architecture in X-Jgts 
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simulation task-related Servlets [ 1 11 or JavaSevsr Pages 
[ I ? ] .  ServletiJSP provides a platform-independent 
means of extending a web server’s capabilities. When a 
user issues a request for a specitic Servlet. the server 
will simply use a separate thread and then process the 
individual request. This has a positive impact on 
performance. 

Engine web components are running in the Tomcat 
[ I33 Web container to dynamically process various 
simulation requests and construct responses. The web 
container provides services such as request dispatching, 
security, concurrency, and life-cycle management. 
Based on different task-related services, engine web 
components may invoke other web resources directly 
through embedded URLs that point to other web 
components while it is executing. or indirectly by 
forwarding a request to another resource using 
RequestDispatcher. There are four main services 
currently available in the engine simulation server. 

Simulation Web Component 
Engine simulation service is a core web component 

that provides a transient, space-averaged. aero- and 
thermo-dynamic gas turbine analysis for a web client 
based on the engine analysis model. Besides that, the 
simulation web component includes the built-in engine 
databinding support and an underlying XML-based 
engine database repository to store simulation data 
(Figure 5). During the engine simulation, the 
verification logics that are automatically generated by 
engine schema compiler can be applied inside the 
simulation so that the users’ inputs and simulation 
outputs could be checked. Engine components can also 
conveniently manipulate the engine data with a set of 
accessor and mutator methods devised from 
databinding framework. When a simulation completes, 
engine components can readily marshal sets of engine 
object data into the underlying data repository for 
storage and unmarshal them back to engine data objects 
later when data manipulation is necessary. This feature 
gives a very useful and natural n-ay for the storage of 
any engine data object and provides the engine 
simulation with unambiguous. meaningful and 
interpretable representation of engine data sets. The 
engine simulation service can also generate simulation 
graphs and transcript data dynamically and send them 
to the front-end Applet for display. 

File Download Web Component 
X-Jgts allows users to save their simulation results 

to the local file system so that users can redisplay their 
simulation result or restart simulation at a later time. 
This is achieved internally by the file-download service. 
Due to security reasons. current web browsers prohibit 
the front-end simulation Applet from directly writing 
data files on the host that is executing it. Nevertheless, 

Applets can usually make nenvork connections to the 
host they came from. In X - J ~ K .  whenever a user wants 
to download a complete sixulation result or engine 
configuration file, the front-snd Applet will make a 
request to tile-download semice resided on the 
simulation web server, loczrc the corresponding case 
file from database repositon- and then generate a 
download response to the ujsr. By setting the HTTP 
Con t e n t  - Di s p o s  L t 1s” response header as 
attachment, Web browser at 2lient side will pop up a 
”save as” box to let user save simulation result. 

File Upload Feb Comuonent 
At times users have a requirement to upload a file 

from their local file system to the web server for display 
of engine simulation resulr in a more meaningful 
way. X-Jgts web components include a Servlet that can 
receive a file upload using its input stream. When a file 
is sent via a browser, it is exbedded in a single POST 
request with multipart/form-data [ 141 encoding type. 
The file upload Servlet .rsill rake in the part of this 
multipart data stream, reassexbled and encoded on the 
server, and then dispatch rhe processing results to 
display service, where dyczmically generated engine 
data file in HTML format a x  sent to client’s browser 
for display. 

Displav Web Component 
Since engine data are stored in XML file format. it is 

easier to apply certain transfarmation logic such that 
simulation results can be dis3layed in a more friendly 
way within the user’s bron 527.  XSLT [ I  j] provides a 
way to transform the engine Sata without cluttering up 
the web components code ivith HTML. When the 
simulation server receives ii Lisplay request, the build- 
in XSLT processor kno\\j how to parse engine 
component-specific XSLT style sheets and apply 
transformations. Best of all. 3. clean separation between 
engine data, presentation, acd simulation logic allows 
changes to be made to the look and feel of a web site 
without altering the simulation code. Because XML- 
based engine data can b t  transformed into many 
different formats, it can also achieve portability across a 
variety of browsers and other devices. 

DEMONSTR-\TTON 

Based on the designed data object model, 
databinding architecture. ana simulation architecture, a 
web-based engine simulation has been implemented 
that internally uses Onyx [ 161 as the engine simulation 
logic. Onyx is an objecr-oriented framework for 
propulsion system simulation. Figure 6 shows the 
XML-based Java Gas Turbine Simulator, X-Jgrs, being 
accessed from an Internet Explorer browser. 
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Figure 6 .  XML-based Java Gas Turbine Simulator accessed from a Web bro\vs:: 

For practical purposes, X-Jgts currently provides 
users with 3 different kinds of simulation services. A 
simulation identifier (ID) is required to perfom each 
service. 

Start a new simulation 
A user can use this choice to start a new engine 

simulation in interactive construction mode. After the 
user enters a simulation ID, and starts to perform the 
simulation, the Swing-based Applet interface (Figure 6) 
will appear. From there the user can access the various 
main windows of the simulation system: Engine 
Schematic Layout, System Control Dialog, Graphing, 
Transcript, or Save User Case. 

Before each simulation is run, the user must provide 
each individual engine component with initial 
simulation configuration data from the designed Engine 
Schematic Layout Dialog (see Figure 7). An engine 
model is developed by building an engine component 

schematic graphically as Icons (e.g.. BktdDuct, Nozzle, 
VariableCompressor. etc.) and connecting them 
together. In the diagram, the arrowhesded connecting 
lines represent both the directional t'lon- path for fluid 
through the engine, and the structural connections along 
which mechanical energy is transmitted. The user can 
define the operational characteristics for the component 
(i.e., the component name, design- and initial-operating 
point data, etc.) in the engine component's dialog 
window (Figure 8). The $.stern Contrai Dialog (Figure 
9) provides controls for the overall operation of the 
simulation. The steady-state numerical solver is used to 
balance the gas turbine equations at the initial operating 
point as was defined by the user: while transient solvers 
are used for dynamic engine perforniance analysis. 
When the necessary data input for simulation 
configuration is finished, the simulation can have the 
option to start simulation immediately or download the 
configuration file and run it later. 
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Figure 7. Engine schematic layout dialog 

Figure 8. Dialogs used to set engine component (Nozzle) operational characteristics 

Figure 9. Engine simulation system control dialog 
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Figure 10. Graphically display engine component parameters 

Once a simulation begins, the engine configuration 
data will be encoded in XML format and sent over the 
Internet to the web simulation server. When the server 
receives the engine configuration file, it then 
automatically dispatches the file to the simulation web 
component. where engine databinding and simulation 
logic are performed. At the same time, the user can 
select from Graph Control Dialog (Figure 10) to plot a 
number of specified parameters for any of the 
components currently displayed in the Engine 
Schematic Layout window. The user may also view 
simulation status reports, using the Transcript button 
shown in Figure 6, that are sent from simulation web 
server during the simulation. Once the simulation is 
completed, the simulation web component will marshal 
all engine data objects into an engine data file 
designated by its simulation ID, and store it into the 
database repository. Finally, the user can use Save 
User Case button to download the complete solution of 
the simulation case for later use. 

Rerun simulation from an existing file 
X-Jgts also provides a service for users to directly 

input engine simulation configurations from a file, 
which allows bypassing the engine construction 
procedures. Part of a sample configuration file is shown 
in Figure 11. When a user uploads the configuration file 
from a web browser (Figure 6), all the defined 
simulation parameters will be immediately available 
from Engine Schematic Layout Dialog and System 
Control Dialog. Users can then use User cases menu in 
Engine Schematic Layout to verify these configurations. 
Users can also edit these data using the above two 
dialogs. In this case, the updated configuration file will 
be sent to the server to run the simulation. 

Show existing simulation data results 
If a user has finished an engine simulation case and 

saved the simulation data using X-Jgts, heishe can later 
redisplay the simulation results in a web browser with a 
more meaningful data presentation scheme using this 

service. In this case, when the web simulation server 
receives an engine simulation case file uploaded from 
the user's web browser (Figure 6), it will internally use 
Displaj. Web Component (combined with sets of pre- 
designed XSLT style sheets) to dynamically generate 
HTML code for display within the user's browser. 
Figure 12 shows the nozzle data file from an example 
simulation case. The user can choose different engine 
components to display from the drop-down list at the 
top of the web page. 

<S:eaayStateSolver SioverNane. NewtoniiarisonSolve< 
ErorToierance- '5.OE-i ~Cswer~e*ceRate="0.7" 
literal1onToFa1lure="50 2eV':rsa: e-3 ze='O 25 
LowerPacfalLlr,:='O 001C' 1;me+-a L ~ I F " O  01"') 

ErrorToierance='5 OEd ' C~iv_e.gecceRale="O 7" 
In:erat,onToFali~re='50' 2e:al r e . :  2' 
FinaIT.,re='Z 0 Pend?a:oaSlze=': 25 
LowerPan8aiL.mli='0 001C LisxrFar afL,mlt="O.O1" :> 

<Connector :mm= Envimnmeni' :o= LPC' rieeaback="false',> 
<Connector frorr='LPC' :o='MVl3' sFeeoack="alse':> 
<Connector f,om="MV13" to= 'HPC' sFeemack="false'l> 
<I-. 3her connectors are defrreo 10 a s r a' vannar --> 

<TpansfeniSoiver S:overName= I-~ovecE. e' 

<Connec:on> 

<,Connec!on> 
I- Conf.guration, 
+qneMoaeP 

<Comwnents> 
<'-only Nozzle is illustrateo "ere the s3re wnh all other cornpnenrs -> 
<NonSource, 

CNonRatator, 
CNozzie Name=~Nozzle"> 

<NozzleDesignPointDala Masr i  owRa!e="195.0" 
TiroatArea-"430 0 Ex:Area='492.0" OragCoefheni="O 952 
VelocltyCoeffc ew'0.98' G~ossThrus1-''9400 O?> 

<'-lhe same with Noznelni!F-.~fDafa-~ 
<ThroatAreaTransienlontml,en qame=7hmat Area Transient Contmller" 

<T,meArray> 0 0 10 0 13 C < TmeArray, 
'VaiueAnay, 430 0 430 0 EiC 0 <,'ValueArray> 

<I- :he same Nifh ix ; tArea~a~~ientContmi lers -> 
'ThroatAreaTransienConuo eo> 

<,Nozzle> 
<,NonRatalw> 

<,NonSource> 
<.Comwnents 

c EngineMwei> 
EPgineBase, 

EngineRooP 

Figure 11. Engine simulation configuration file 
specified in XML file format 
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X-JGTS Simulation Data View 

1-m 
. . . ~ _ _  

1’3s 0 430 0 492 0 J ?52 

N o z z l e l r n t k l l O p e r a t d t a  

-mw#m 
430 0 492 0 

Throat Area Transtent Controller Exit Area Transient Controller 

0.0 430.0 

10.0 430.0 

13.0 660.0 

0.0 

10.0 

13 0 

492 0 

492.0 

880.0 

430 0000 ‘52 X O  0.9564 0 8897 0 0000 1921 3: 100 3765 0 00000000 

Trdnsient S ta te  Sdutm Data BmwB 
OoooO 430CoC; 4 9 2 W  09564 0 E097 0 0000 192: 31 io0 3765 C OOJOMOC 

oim 43oca:  4920003 09554 0 E872 0 ooco 1922 3 io: 404: c wocmnc 
o:om 43ocit; w o o 0 0  cs37 0 iB43 0 ooco 2125 23 ;m 4554 5 oo0cmoc 
03oOo 430cOCj 492oooO 09534 0 E843 0 0000 22% 23 :03 4b77 c MOOOOOC 

I 

4 Done ;i3 MY ComDuter 

Figure 12. Nozzle simulation data displayed within a user’s web browser 

COXCLUSION 

In this work, an XML-based dynamic databinding 
framework for use in engine simulation has been 
discussed. By dynamic data binding, the framework 
provides an object interface to access and use engine 
data, transparently mapping simulation data in engine 
components as engine data objects. The framework also 
enables the separation of engine simulation logic from 
its persistence logic. such that the engine simulation 
codes and the underlying data persistence codes can be 
developed independently. 

Since engine component data in the binding process 
are stored in an XML document, they not only bypass 
the requirement to have a standard binary encoding or 
storage format, but also provide the meaning of the data 
through its tag representation. Furthermore, it is 
completely natural to move around XML engine data 
using HTTP through disparate networks. 

This paper also describes a Web-based engine 
simulation system, X-Jgfs, which internally uses engine 

databinding framework. The simulation system couples 
a front-end graphical user interface. developed using 
the Java Swing API, and various Java Servlet-based 
web components from engine simulation server to 
service user’s requests. The designed web components 
include remote simulation service, dynamic data 
display service in HTML format. and file download and 
upload services which allow a user to save data for later 
use in a more secure way. All these services are readily 
available via the built-in databinding framework 
support and the use of XML to describe engine data. 
The combined package provides analytical, graphical 
and data management tools which allow users to 
construct and control dynamic gas turbine simulations 
by manipulating graphical objects from a variety of 
heterogeneous computer platforms through the use of 
Java-enabled world-wide web browsers. 

The method developed in this paper is generic and 
may readily be used for other simulation applications 
requiring intensive data exchange. Using this approach, 
developers are enabled to design better aircraft engine 
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simulation codes via 
data representation 
validation method. 

a systematic and more iiicaiiingh[ [ 151 XSL Transformation W3C Recommendation version 1.0. 

[ 161 Reed, J.A.. 1998. "Onyx: A n  Object-Oriented Framework 
for Computational Simulation of Gas Turbine Systems." 
Ph.D. Dissertation. The Cniversity of Toledo 

scheme and a built-in data. November. 1999. hiiu: v.\\\\ .i.v3.orc TR.'xslt, 
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